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Abstract

The instanton as a topological object in Yang-Mills gauge theory is
presented.
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1 Non-trivial field configurations

It often happens that the space of all possible field configurations may be given a
non-trivial topology by the condition that some functional S of the fields is finite.
This comes up in finding field configurations around which we may expand the
field variables in path integrals in Euclideanized d—dimensional spacetime.
Examples of well-known extended field configurations correspond to:

e Skyrmions

e Domain boundaries

e Monopoles, vortex lines
e Instantons

We’ll focus on the latter.

2 Path-integral approach

The most useful approach to the quantization of gauge theories appears to
be Feynman’s path integral method. From a geometric point of view, the path
integral has the advantage of being able to take into account the global topology
of the gauge potentials, while the canonical perturbation theory approach to
quantization is sensitive only to the local topology.

At present mathematically precise theory of path-integration can be for-
mulated only for spacetimes with positive signatures (4, +, +, +), denoted Eu-
clidean or imaginary time manifolds. Physically meaningful answers are obtain-
able by continuing the results ! of the Euclidean path integration back to the
Minkowski regime with signature (—, +,+, +).

In the Euclidean path-integral approach to quantization, each field configu-
ration ¢(z) is weighted by the ‘Boltzmann factor’, i.e. the exponential of minus
its Euclidean action, exp —S[¢].

The complete generating functional for the various Green’s functions of a
theory is obtained by functionally integrating over all inequivalent field configu-
rations. When performing this integration, one should naturally be careful not
to include equivalent field configurations, i.e. related by (small) gauge transfor-
mations. It’s needed then a measure that will count only once each gauge orbit,
i.e. that be invariant under the action of the gauge group. 2

Since the first-order functional variation of the action vanishes for solutions
of the equations of motion, these configurations correspond to stationary points

Lvia Wick rotation

2such measures (mathematically) are called Haar measures, and the ansatz to proceed in
the the context of Yang-Mills theories is known of course as the so-called Faddeev-Popov
method
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in the functional space. Therefore in the path integral approach we first seek so-
lutions to the Euclidean field equations with minimum action and then compute
quantum mechanical fluctuations around them.

3 Yang-Mills theory

A path integral is well defined only for Euclidean metric. To evaluate this
integral it is important to find the local minima of the Euclidean action and
compute the quantum fluctuations around them. The local minima of the SU(2)
gauge theory on a four-dimensional Euclidean space R* are called instantons.

3.1 Fields and the action

Consider the SU(2) gauge theory defined on R*, which is described by the
principal bundle P(R*, SU(2)).
The gauge potential ? and strength are

A= AT, dz"

]—":dA+AAA:%]-',“, dz* A da”

where
Fuv = 04 Av=0y Ay + [Au A = F 0T,
fuua = 6# Ava — 0, -Alw + €abe ‘A”b Ave
and T, = %% are the SU/(2) algebra generators

[TaaTb] = €gpcle
The Bianchi identity is
DF = dF+[AF]=0

The action for Yang-Mills theories is

1 1 1
Sy m[A] = ~1 /M FrvFung? dtz = 3 /M Tr F AN+F

3we do not include here an index labelling the local trivialization used, as we can take a
single one, i.e. R? is trivial
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while in the Euclideanized form *
1 1 1
E a a 5 g4 T
SYM[A]—"*‘Z / fﬂ«”'fu"gz d’r = —5/ r FN\xF

which is positive definite. ®
The Yang-Mills equations found by varying the action with respect to A,
may be written as

D«F=0, or D,F =0

dxF+ANxF—xFNA=0

while the Bianchi identity is as above

dF + ANF—FANA=0

3.2 The (anti-) self-dual fields and the lower bound of the
action

In order to find the minimum of the action configurations of the theory, let’s
consider the inequality ©

/ tr{Fuw £ *Fu}> d*z >0
M

This bound is saturated by the (anti-) self-dual "field configurations
F=FxF

8

which solve the field equations ® now implied by the Bianchi identities

DuFuv =Dy xFu =0

Noting that F,, x F*¥ = F,,Fu., the previous inequality may be written
as

/ tr{2F . Fuv £ 2F 0 * Fuu } d'z >0
M

4The Hodge * is now taken with respect to the Euclidean metric

5The contribution of each gauge potential or connection A, () to the path integral is thus
bounded and well-behaved.

6Bogomol’nyi inequality

"Note : xF = % * Fuy do? Adx¥ with  * Fp, = %6“”’"’}',,0 ; also trFAF =
—%tr}'#,, * Fupdz' A ... A dz*

8note however that instead this equality is a first order differential equation, whereas the
Yang-Mills field equations are second order
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The action now becomes

S = —1/ Tr FAxF = :Fl/ Tr FANF
2/ 2/

which is proportional, S = 472|W[A]|, to the integral of the second Chern
class

1
8772 M

W[A] = Tr FAF

’t Hooft called such special field configurations instantons.

3.3 Finite action

Yang-Mills instantons are finite action solutions to the Yang-Mills equations of
motion.
The requirement that the action °

S = —1/ tr FANF
2J/m

be finite imposes that at infinity S = 0, which happens iff 7,, = 0 there.
Also note that this is a gauge invariant condition. Indeed, under a gauge trans-
formation g,

A, = g.A,‘g_1 +g Oug_l

Fuv = 9Fug ™"

Therefore, it will be satisfied not only by A, = 0 but by any gauge-transformed
field (called pure gauge) obtained from it,

Au(z) = g() 6Hg*1(a;) as |z| - o

The spacetime infinity can be identified with S3. This way, it is defined
a map g : S° — G which is classified by 73(G). In the case of interest here,
G =2 SU(2), we have m3(SU(2)) = Z.

It is convenient to compactify the spacetime to the S* sphere, obtained by
adding the infinity to R*. This manifold is described by two patches, S* =
U, UU_, where U; NU_ is homeomorphic to the S sphere. (U, may represent
the standard spacetime, the equatorial S* sphere the spacetime infinity, and U_
just an artifact of the compactification).

9Please note that S = — %fM d®z tr F A F can either be regarded as the action for
quantum gauge fields in a Euclidean d-dimensional spacetime, or the potential energy for
classical gauge fields in temporal gauge, with A = 0, in (d+1)-dimensional spacetime
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Consider A_(z) = 0, then all the topological information about the bundle
is contained in the transition function g;_(z) for x € UL NU_,

Ay =g7ldgy -

The map g above is then just the transition function g, (z): S® — SU(2).

3.4 Compactifiability of finite-action Yang-Mills connec-
tions

Consider a local form A(z) of the connection one-form on a manifold M which
is a compact manifold M lacking a point, M = M — {0}, with the correspond-
ing local form of the curvature F = dA + A A A being harmonic. Then all
Euclidean finite action Yang-Mills solution over M can be smoothly extended
to the compact manifold M.

This theorem tells that any self-dual finite-action solution to the Euclidean
Yang-Mills equations must describe a bundle with a compactified spacetime base
manifold.

4 Instantons

Consider again gauge configurations 1° of the form A_ = 0and A, = g;ingr_.
Self-dual solutions of this kind are named instantons.

One example of such solution is provided by referring to SU(2). Actually,
this case is rather special as it can be identified with the SU(2) subgroup of any
larger group; indeed, this is sufficient for SU(N), N > 2.

Maps g : S3 — SU(2) are classified ' according to m3(S%) = Z. Represen-
tatives of each homotopy class can be provided by the following maps.

e (0) The constant map go specifies the 3rd homotopy trivial class of SU(2)

Jo:T e
e (1) The identity g; map specifies the 3rd homotopy class 1 of SU(2)
g1:T %[m‘ll +izioy], = (z')? +x2
e (n) The map (g1)" specifies the 3rd homotopy class n of SU(2)

1 L .
Im=(@)" 2~ T—n[:c‘il +izioy]", 1= (z*)? 4 x?

10These are also particularly relevant when dealing with the strong CP problem
Note that SU(2) = S2 through z1 +izio; € SU(2) & (z4)2+x2=1
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Consider the homotopy class 1, and take the identity map ¢ = ¢g1. The
corresponding gauge potential 2 is

7.2

— ~1
Ay(a) = 50 @)Dy @)
and the corresponding field strength is

_ax
=

— — 1 —
where 05 = [O'i,O'j], 0i0 = 50 = —00;-
The explicit forms for these are

v

AH(:E) = —2lzpym
and
. A2
oo = 4% G F
. 4wher'e Y = i"”%i fori=1,2,3, pi*" = —n* = M for p,v =1,2,3 and
nw = i,

Some remarks: the tensor ¥, is antisymmetric and self dual, so is F,,,, as it
should; it is indeed a solution of the Euclidean Yang-Mills equations of motion
which on the sphere S® correspondent to |z| — oo is a pure gauge; the winding
number of this field is one, as is the homotopy class label of the correspondent
g defined on S3.

5 Topological properties
Notice '3 that trF?2 is a closed form,

d(trF?) = tr[dF F+ F dF] = tr{-[A,FIF - FIA,F]} = 0

where the Bianchi identity dF + [A,F] = 0 has been used. Then, by
Poincaré’s lemma, trF? is locally exact; i.e., there is a local 3—form Q3[A]
such that

trF? = dQ3[A]

in every local trivialization.
Qs[A] is the Chern-Simons form (or or 0-cochain)

12\ is to be interpreted as the size of the instanton
13Here for simplification of notation we omit the wedge product and write e.g. F A F = F?
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Qs[A] = tr (AdA + §A3)

trF? is the second Chern character (or Chern-Pontrjagin density);in
case trF? is considered over S%, it is an element of the de Rham cohomology
group H*(S*). It is clearly gauge invariant.

Using the parameterization of S* = U_ U U, introduces before, and A_ =
0, Ay =g, dgs_, then this gives for W[A],

WAl = 82 fU+uU tr 72
= 5= ( fU dQs[A4] + [y dQs[A-])
= g ( faU Q3[A4] + [op Q3[A])

g fss Qs3[Ay] — Qs[A-])

87r2 f53 Q3 g+—dg+ ]
= mz fss tr (g+ dg+ )

where it has been used Stoke’s theorem, and noted that U, = —0U_ ~ S3.
14

,_.

3

W]A] is related with the homotopy group m3(G). '® For the case G =
SU(n), (n > 2), n3(SU(n)) = Z; in this case, W[A] € Z is the winding
number, labelling the maps g4_. This is shown explicitly next.

Take the representatives g, of the elements of m3(S%) considered in the last
section:

e (0) For the constant map go(z) = e, A = 0 on S*, and as the bundle is
trivial A = 0 on S* also; then W[A] =

e (1) For the identity map g1 : z — L[z*1 + iz'oy],

7.2

A= mg_l(z') dg(z)

and it is shown that
WAl =1

e (n) It can be shown also, please see the discussion of the Maurer-Cartan
integral invariant that g» = g1¢91 has winding number 2; in general then

WI[A] =n

14Note that we have recovered the form of the winding number in terms of the Maurer-
Cartan invariant integral
15and with the Dirac operator



